Vantage_NewsVantage News is a Pine Script library that provides pre-market economic event filtering defaults intended for strategies that trade on YM futures. It determines a default for whether trading should be blocked, delayed, or allowed on any given day.
Core Concept
News events are pre-compiled into Pine Script data libraries organized by half-year (LO1_News2025H1, LO1_News2025H2, etc.), updated weekly on Sundays. There are no API calls — events are baked into arrays of dates, times, type IDs, and severities.
Severity System
Can be configured to define or override three default severity tiers:
- Sev 3 (CPI, NFP, FOMC) — defaults to blocks the entire day or delays, depending on policy
- Sev 2 (ISM PMI, claims) — defaults to delay trading until the event time + a configurable post-delay window
- Sev 1 (secondary indicators) — defaults to no delays
Blocking vs Delaying
- Block: No trading for the full session. WillTradeToday() returns false.
- Delay: Trading allowed after eventTime + delayMinutes. IsDelayed(currentTimeMs) returns true until the release time passes.
Provides a per-event-type policy mechanism so overrides can force any event to block, delay, or be ignored regardless of its base severity.
Next Trading Window Calculation
FindNextTradingWindow() scans forward up to 14 days, skipping weekends and blocked days based on the provided configuration. If the next tradeable day has a delay, it returns the delayed start time — so an info panel can show e.g. "Mon 7:35 AM" to indicate the next trading opening
Exception Mappings
Each half-year library can ship per-event-type overrides (different severity, custom delay minutes, tags). When the applyLibExceptionMappings configuration is enabled, these override the base severity — allowing the data to carry date-specific adjustments.
Special Handling
CME early close days are encoded as a special event type. CheckCmeEarlyClose() returns a halt timestamp so a strategy can truncate the session.
Caching
Evaluation is lazy and memoized by date string — EvaluateForDate() only recomputes when the date changes. The event cache is built once at initialization via a day index for fast date lookups.
อินดิเคเตอร์และกลยุทธ์
Vantage_NewsTypesLibrary "Vantage_NewsTypes"
News Type definitions and default severity ratings with respect to YM futures. Updated weekly as news changes.
Severity 1 - Watch but not considered very impactful
Severity 2 - Default to don't trade until after event
Severity 3 - Default to don't trade on a day with this event
HawkDoveScoreLibLibrary "HawkDoveScoreLib"
hds_score(sym2y, sym10y, symBE10, symBS, symFCI, tfMacro, lenTrend, lenNorm, smoothScore, useRatePath, useCurve, useRealYield, useBalanceSh, useStressFCI, wRatePath, wCurve, wRealYield, wBS, wStress)
Parameters:
sym2y (string)
sym10y (string)
symBE10 (string)
symBS (string)
symFCI (string)
tfMacro (string)
lenTrend (int)
lenNorm (int)
smoothScore (simple int)
useRatePath (bool)
useCurve (bool)
useRealYield (bool)
useBalanceSh (bool)
useStressFCI (bool)
wRatePath (float)
wCurve (float)
wRealYield (float)
wBS (float)
wStress (float)
hds_regime(score, thrDove, thrHawk)
Parameters:
score (float)
thrDove (int)
thrHawk (int)
hds_regime_label(score, thrDove, thrHawk)
Parameters:
score (float)
thrDove (int)
thrHawk (int)
pubLibCandlestickPatternsLibrary "pubLibCandlestickPatterns"
candlestick pattern conditions for indicator and strategy development
doji()
bull_marubozu()
bear_marubozu()
spinning_top()
bull_belt_hold_line()
bear_belt_hold_line()
bull_breakaway()
bear_breakaway()
concealing_baby_swallow()
bull_counterattack()
bear_counterattack()
dark_cloud_cover()
long_legged_doji()
southern_doji()
northern_doji()
dumpling_top()
bull_engulfing()
bear_engulfing()
frypan_bottom()
hammer()
hanging_man()
bull_harami()
bear_harami()
bull_harami_cross()
bear_harami_cross()
high_wave()
bull_hikkake()
bear_hikkake()
homing_pigeon()
in_neck()
bull_kicking()
bear_kicking()
matching_low()
on_neck()
piercing()
bull_separating_lines()
bear_separating_lines()
upgap_side_by_side_white_lines()
downgap_side_by_side_white_lines()
stalled()
bull_star()
bear_star()
bull_doji_star()
bear_doji_star()
morning_star()
evening_star()
morning_doji_star()
evening_doji_star()
abandoned_baby_bottom()
abandoned_baby_top()
inverted_hammer()
shooting_star()
dragonfly_doji()
gravestone_doji()
stick_sandwich()
upward_gapping_tasuki()
downward_gapping_tasuki()
three_black_crows()
advance_block()
three_advancing_white_soldiers()
bull_three_line_strike()
bear_three_line_strike()
rising_three_methods()
falling_three_methods()
three_stars_in_the_south()
thrusting()
tower_bottom()
tower_top()
tri_star_bottom()
tri_star_top()
tweezer_bottom()
tweezer_top()
upside_gap_two_crows()
NodialTreesLows2: ML Random Forest / Pivot Lows (Part 2 of 2)Title: `Library: ML Random Forest / Pivot Lows (Part 2 of 2)`
Description:
This library contains the second half (Trees 6-11) of the Random Forest Classifier designed to validate Pivot Lows (Long setups).
It is a direct extension of NodialTreesL1 and cannot be used alone. Due to Pine Script's compilation limits on complexity and file size, the 12-tree ensemble model has been split into two separate libraries.
### 🧩 Library Contents
This module exports the following methods representing the specific decision paths of the trained AI model:
- `tree_6(array f)`
- `tree_7(array f)`
- `tree_8(array f)`
- `tree_9(array f)`
- `tree_10(array f)`
- `tree_11(array f)`
### ⚠️ Implementation Guide
To use this library, you must combine it with Part 1.
Please refer to the NodialTreesLows1 library description for:
1. The full Integration Code Example (how to average the votes).
2. The exact Input Feature List (the 27 required metrics).
3. Detailed explanation of the Machine Learning logic.
How to finish the integration:
Import this library alongside Part 1 and add the results of `tree_6` through `tree_11` to your voting sum, as shown in the Part 1 documentation.
NodialTreesLows1: ML Random Forest / Pivot Lows (Part 1 of 2)Title: `Library: ML Random Forest / Pivot Lows (Part 1 of 2)`
Description:
This library contains the first half (Trees 0-5) of a Random Forest Classifier designed to validate Pivot Lows (Long setups).
Due to Pine Script size constraints, the model is split into two libraries. You must use this library in conjunction with NodialTreesL2 to run the full ensemble.
### 🧩 System Architecture
- Model: Random Forest (12 Trees total).
- This Library: Contains `tree_0` to `tree_5`.
- Logic: Each tree analyzes a feature array and outputs a probability score.
- Target: Validating Swing Lows / Support Bounces.
### 📊 Input Requirements
The methods expect an `array` of size 27 containing market features (Price Action, Momentum, Volatility, Volume, Structure). The exact order of features is critical for the model's accuracy.
### 🛠️ Integration Example
Since this is a modular library, you need to import both parts and average their results to get the final prediction.
### 📋 Feature Mapping (Array Indexing)
To get accurate predictions, the input array must contain exactly 27 floats in this specific order:
0. Timeframe (in seconds)
1. RSI (Raw Value)
2. MACD Histogram
3. Relative Volume
4. EMA Distance (%)
5. EMA Slope
6. ATR Ratio
7. ADX
8. Buying/Selling Pressure
9. Wick Ratio
10-16. Divergences & Pattern Flags (Boolean 0.0/1.0)
17-22. Proprietary Momentum Metrics ("Onion" Structure)
23-26. Derived Volatility/Volume Features
*Note: For the advanced proprietary metrics (Indices 17-26), users must implement their own calculations or use compatible indicators.*
//@version=6
indicator("My ML Long Strategy", overlay=true)
// Import BOTH libraries
import YourUsername/NodialTreesL1/1 as rf_part1
import YourUsername/NodialTreesL2/1 as rf_part2
// ... (Calculate your 27 features and fill the array) ...
// var features = array.from(timeframe, rsi, macd, ...)
// Calculate Ensemble Probability (Average of 12 Trees)
float vote_sum = 0.0
// Trees from Part 1
vote_sum += rf_part1.tree_0(features)
vote_sum += rf_part1.tree_1(features)
vote_sum += rf_part1.tree_2(features)
vote_sum += rf_part1.tree_3(features)
vote_sum += rf_part1.tree_4(features)
vote_sum += rf_part1.tree_5(features)
// Trees from Part 2 (Trees 6-11)
vote_sum += rf_part2.tree_6(features)
vote_sum += rf_part2.tree_7(features)
vote_sum += rf_part2.tree_8(features)
vote_sum += rf_part2.tree_9(features)
vote_sum += rf_part2.tree_10(features)
vote_sum += rf_part2.tree_11(features)
// Final Probability (0.0 to 1.0)
float final_prob = vote_sum / 12.0
if final_prob > 0.60
label.new(bar_index, low, "Valid Low", color=color.green)
NodialTreesHighs2: ML Random Forest / Pivot Highs (Part 2 of 2)Title: `Library: ML Random Forest / Pivot Highs (Part 2 of 2)`
Description:
This library contains the second half (Trees 6-11) of the Random Forest Classifier designed to validate Pivot Highs (Short setups).
It is a direct extension of NodialTreesH1 and cannot be used alone. Due to Pine Script's compilation limits on complexity and file size, the 12-tree ensemble model has been split into two separate libraries.
### 🧩 Library Contents
This module exports the following methods representing the specific decision paths of the trained AI model:
- `tree_6(array f)`
- `tree_7(array f)`
- `tree_8(array f)`
- `tree_9(array f)`
- `tree_10(array f)`
- `tree_11(array f)`
### ⚠️ Implementation Guide
To use this library, you must combine it with Part 1.
Please refer to the NodialTreesH1 library description for:
1. The full Integration Code Example (how to average the votes).
2. The exact Input Feature List (the 27 required metrics).
3. Detailed explanation of the Machine Learning logic.
How to finish the integration:
Import this library alongside Part 1 and add the results of `tree_6` through `tree_11` to your voting sum, as shown in the Part 1 documentation.
NodialTreesHighs1: ML Random Forest / Pivot Highs (Part 1 of 2)Title: `Library: ML Random Forest / Pivot Highs (Part 1 of 2)`
Description:
This library contains the first half (Trees 0-5) of a Random Forest Classifier designed to validate Pivot Highs (Short setups).
Due to Pine Script size constraints, the model is split into two libraries. You must use this library in conjunction with NodialTreesH2 to run the full ensemble.
### 🧩 System Architecture
- Model: Random Forest (12 Trees total).
- This Library: Contains `tree_0` to `tree_5`.
- Logic: Each tree analyzes a feature array and outputs a probability score.
- Target: Validating Swing Highs / Resistance Rejections.
### 📊 Input Requirements
The methods expect an `array` of size 27 containing market features (Price Action, Momentum, Volatility, Volume, Structure). The exact order of features is critical for the model's accuracy.
### 🛠️ Integration Example
Since this is a modular library, you need to import both parts and average their results to get the final prediction.
### 📋 Feature Mapping (Array Indexing)
To get accurate predictions, the input array must contain exactly 27 floats in this specific order:
0. Timeframe (in seconds)
1. RSI (Raw Value)
2. MACD Histogram
3. Relative Volume
4. EMA Distance (%)
5. EMA Slope
6. ATR Ratio
7. ADX
8. Buying/Selling Pressure
9. Wick Ratio
10-16. Divergences & Pattern Flags (Boolean 0.0/1.0)
17-22. Proprietary Momentum Metrics ("Onion" Structure)
23-26. Derived Volatility/Volume Features
*Note: For the advanced proprietary metrics (Indices 17-26), users must implement their own calculations or use compatible indicators.*
//@version=6
indicator("My ML Short Strategy", overlay=true)
// Import BOTH libraries
import YourUsername/NodialTreesH1/1 as rf_part1
import YourUsername/NodialTreesH2/1 as rf_part2
// ... (Calculate your 27 features and fill the array) ...
// var features = array.from(timeframe, rsi, macd, ...)
// Calculate Ensemble Probability (Average of 12 Trees)
float vote_sum = 0.0
// Trees from Part 1
vote_sum += rf_part1.tree_0(features)
vote_sum += rf_part1.tree_1(features)
vote_sum += rf_part1.tree_2(features)
vote_sum += rf_part1.tree_3(features)
vote_sum += rf_part1.tree_4(features)
vote_sum += rf_part1.tree_5(features)
// Trees from Part 2 (Trees 6-11)
vote_sum += rf_part2.tree_6(features)
vote_sum += rf_part2.tree_7(features)
vote_sum += rf_part2.tree_8(features)
vote_sum += rf_part2.tree_9(features)
vote_sum += rf_part2.tree_10(features)
vote_sum += rf_part2.tree_11(features)
// Final Probability (0.0 to 1.0)
float final_prob = vote_sum / 12.0
if final_prob > 0.60
label.new(bar_index, high, "Valid Short", color=color.red)
NormalizedVolume_HHHLNormalized volume + HH/HL/LH/LL structure logic for confirming moves and spotting traps. Library only—intended for use with indicators. Does not plot or draw anything by itself.
lib_w2c_INDILibrary "lib_w2c_INDI"
f_getChunk18()
f_getChunk19()
f_getChunk20()
f_getChunkNames()
f_getExpectedLength()
f_getKeyword()
f_dummyRegister()
f_loadChunk(name)
Parameters:
name (string)
lib_w2b_INDILibrary "lib_w2b_INDI"
f_getChunk9()
f_getChunk10()
f_getChunk11()
f_getChunk12()
f_getChunk13()
f_getChunk14()
f_getChunk15()
f_getChunk16()
f_getChunk17()
f_getChunkNames()
f_getExpectedLength()
f_getKeyword()
f_dummyRegister()
f_loadChunk(name)
Parameters:
name (string)
lib_w2a_INDILibrary "lib_w2a_INDI"
f_getChunk0()
f_getChunk1()
f_getChunk2()
f_getChunk3()
f_getChunk4()
f_getChunk5()
f_getChunk6()
f_getChunk7()
f_getChunk8()
f_getChunkNames()
f_getExpectedLength()
f_getKeyword()
f_dummyRegister()
f_loadChunk(name)
Parameters:
name (string)
lib_w1c_INDILibrary "lib_w1c_INDI"
f_getChunk18()
f_getChunkNames()
f_getExpectedLength()
f_getKeyword()
f_dummyRegister()
f_loadChunk(name)
Parameters:
name (string)
lib_w1b_INDILibrary "lib_w1b_INDI"
f_getChunk9()
f_getChunk10()
f_getChunk11()
f_getChunk12()
f_getChunk13()
f_getChunk14()
f_getChunk15()
f_getChunk16()
f_getChunk17()
f_getChunkNames()
f_getExpectedLength()
f_getKeyword()
f_dummyRegister()
f_loadChunk(name)
Parameters:
name (string)
lib_w1a_INDILibrary "lib_w1a_INDI"
f_getChunk0()
f_getChunk1()
f_getChunk2()
f_getChunk3()
f_getChunk4()
f_getChunk5()
f_getChunk6()
f_getChunk7()
f_getChunk8()
f_getChunkNames()
f_getExpectedLength()
f_getKeyword()
f_dummyRegister()
f_loadChunk(name)
Parameters:
name (string)
lib_b2_INDILibrary "lib_b2_INDI"
f_getChunk0()
f_getChunkNames()
f_getExpectedLength()
f_getKeyword()
f_dummyRegister()
f_loadChunk(name)
Parameters:
name (string)
lib_b1_INDILibrary "lib_b1_INDI"
f_getChunk0()
f_getChunkNames()
f_getExpectedLength()
f_getKeyword()
f_dummyRegister()
f_loadChunk(name)
Parameters:
name (string)
TPOSmartMoneyLibLibrary "TPOSmartMoneyLib"
Library for TPO (Time Price Opportunity) and Smart Money concepts including session management, PDH/PDL detection, sweeping logic, and volume profile utilities
f_price_to_tick(p)
Convert price to tick
Parameters:
p (float) : Price value
Returns: Tick value
f_tick_to_row(t, row_ticks_in)
Convert tick to row
Parameters:
t (int) : Tick value
row_ticks_in (int) : Number of ticks per row
Returns: Row index
f_row_to_price(row, row_ticks_in)
Convert row to price (midpoint)
Parameters:
row (int) : Row index
row_ticks_in (int) : Number of ticks per row
Returns: Price at row midpoint
f_calc_row_ticks(natr_ref, row_gran_mult)
Calculate dynamic row size based on normalized ATR
Parameters:
natr_ref (float) : Daily normalized ATR reference value
row_gran_mult (float) : Row granularity multiplier
Returns: Number of ticks per row
f_more_transp_pct(c, pct)
Increase color transparency by percentage
Parameters:
c (color) : Input color
pct (float) : Percentage to increase transparency (0.0 to 1.0)
Returns: Color with increased transparency
f_dom_color(dom, buy_col, sell_col, gamma, transp_weak, transp_strong)
Calculate dominance color based on buy/sell ratio
Parameters:
dom (float) : Dominance ratio (-1 to 1, negative = sell, positive = buy)
buy_col (color) : Buy dominant color
sell_col (color) : Sell dominant color
gamma (float) : Gamma correction for color intensity
transp_weak (int) : Transparency for weak dominance
transp_strong (int) : Transparency for strong dominance
Returns: Blended color
f_sess_part(sess_str, get_start)
Parse session string to get start or end time
Parameters:
sess_str (string) : Session string in format "HHMM-HHMM"
get_start (bool) : True to get start time, false to get end time
Returns: Time string in HHMM format
f_hhmm_to_h(hhmm)
Convert HHMM string to hours
Parameters:
hhmm (string) : Time string in HHMM format
Returns: Hours (0-23)
f_hhmm_to_m(hhmm)
Convert HHMM string to minutes
Parameters:
hhmm (string) : Time string in HHMM format
Returns: Minutes (0-59)
f_prev_day_window_bounds(today_day_rth, win_start, win_end, session_tz)
Calculate previous day window bounds
Parameters:
today_day_rth (int) : Today's RTH start timestamp
win_start (string) : Window start time in HHMM format
win_end (string) : Window end time in HHMM format
session_tz (string) : Session timezone
Returns: Tuple of
f_default_session_colors()
Get default session colors
Returns: Array of 4 colors
f_session_names()
Get session names
Returns: Array of 4 session names
f_process_hl(arr, rng, keep_bars, lock_to_live)
Process high/low lines with sweeping detection
Parameters:
arr (array) : Array of HLLine objects
rng (float) : Price range for visibility filtering
keep_bars (int) : Maximum bars to keep lines
lock_to_live (bool) : Whether to lock line end to current bar
Returns: 0 (for chaining)
f_process_naked_lines(arr, calc_bars, bars_per_day, keep_to_day_end)
Process naked lines (POC/VAH/VAL) with sweeping detection
Parameters:
arr (array) : Array of NakedLine objects
calc_bars (int) : Maximum calculation bars
bars_per_day (int) : Bars per day for scope calculation
keep_to_day_end (bool) : Whether to extend to day end
Returns: 0 (for chaining)
f_update_pdhl_lines(pd_hl, pdh, pdl, new_day, pd_rng, bars_per_day, pdh_color, pdl_color)
Detect and create PDH/PDL lines
Parameters:
pd_hl (array) : Array to store HLLine objects
pdh (float) : Previous day high
pdl (float) : Previous day low
new_day (bool) : Whether it's a new day
pd_rng (float) : Price range for visibility
bars_per_day (int) : Bars per day
pdh_color (color) : PDH line color
pdl_color (color) : PDL line color
Returns: 0 (for chaining)
f_poc_from_vals(keys, vals)
Calculate POC from sorted keys and values
Parameters:
keys (array) : Sorted array of row keys
vals (array) : Array of volume values
Returns: POC row key
f_value_area(keys, vals, poc_key, va_pct)
Calculate Value Area from volume distribution
Parameters:
keys (array) : Sorted array of row keys
vals (array) : Array of volume values
poc_key (int) : POC row key
va_pct (float) : Value Area percentage (typically 0.70)
Returns: Tuple of
f_find_key_sorted(keys, target)
Find key in sorted array using binary search
Parameters:
keys (array) : Sorted array of keys
target (int) : Target key to find
Returns: Index of key, or -1 if not found
f_zscore_safe(x, len)
Safe z-score calculation using built-in functions
Parameters:
x (float) : Input series
len (int) : Lookback length
Returns: Z-score
HLLine
Represents a high/low line with sweeping detection
Fields:
ln (series line) : Line object
lb (series label) : Label object
lvl (series float) : Price level
startBar (series int) : Bar index where line starts
swept (series bool) : Whether the level has been swept
isHigh (series bool) : True if this is a high, false if low
col (series color) : Line color
NakedLine
Represents a naked POC/VAH/VAL line
Fields:
ln (series line) : Line object
lb (series label) : Label object
lvl (series float) : Price level
startBar (series int) : Bar index where line starts
swept (series bool) : Whether the level has been swept
sweptBar (series int) : Bar index where swept occurred
endBar (series int) : Bar index where line should end
TrinityCore1Library "TrinityCore1"
default_config()
calc_weights(sym, cp, cs, s1, s2, s3, s4, s5, cfg)
Parameters:
sym (string)
cp (string)
cs (string)
s1 (string)
s2 (string)
s3 (string)
s4 (string)
s5 (string)
cfg (TrinityConfig)
calc_diagnostics(sym, cp, cs, s1, s2, s3, s4, s5, cfg)
Parameters:
sym (string)
cp (string)
cs (string)
s1 (string)
s2 (string)
s3 (string)
s4 (string)
s5 (string)
cfg (TrinityConfig)
TrinityWeights
Fields:
stock (series float)
s1 (series float)
s2 (series float)
s3 (series float)
s4 (series float)
s5 (series float)
cash (series float)
SafeDiag
Fields:
id (series string)
vol (series float)
corr (series float)
dd (series float)
score (series float)
final_w (series float)
TrinityDiagLite
Fields:
ready_code (series int)
drop_code (series int)
is_ready (series bool)
risk_gate (series bool)
p_value (series float)
d_bar_index (series int)
TrinityDiagFull
Fields:
base (TrinityDiagLite)
raw_vol (series float)
adj_vol (series float)
target_w (series float)
penalty_mult (series float)
sd1 (SafeDiag)
sd2 (SafeDiag)
sd3 (SafeDiag)
sd4 (SafeDiag)
sd5 (SafeDiag)
TrinityConfig
Fields:
enabled (series bool)
len_20 (series int)
w_20 (series float)
len_63 (series int)
w_63 (series float)
len_126 (series int)
w_126 (series float)
len_252 (series int)
w_252 (series float)
risk_floor (series float)
risk_factor (series float)
target_vol_stock (series float)
target_vol_safe (series float)
gov_max_lev (series float)
gov_min_mult (series float)
top_k (series int)
sqs_base (series float)
sqs_w_corr (series float)
sqs_w_vol (series float)
sqs_w_dd (series float)
sqs_range_corr (series float)
sqs_range_dd (series float)
fall_thr (series float)
rate_fall (series float)
rate_accel (series float)
penalty_val (series float)
ready_bars (series int)
RSMPatternLibLibrary "RSMPatternLib"
RSM Pattern Library - All chart patterns from PATTERNS.md
Implements: Candlestick patterns, Support/Resistance, Gaps, Triangles, Volume Divergence, and more
ALL PATTERNS ARE OWN IMPLEMENTATION - No external dependencies
EDGE CASES HANDLED:
- Zero/tiny candle bodies
- Missing volume data
- Low bar count scenarios
- Integer division issues
- Price normalization for different instruments
bullishEngulfing(minBodyRatio, minPrevBodyRatio)
Detects Bullish Engulfing pattern
Parameters:
minBodyRatio (float) : Minimum body size as ratio of total range (default 0.3)
minPrevBodyRatio (float) : Minimum previous candle body ratio to filter dojis (default 0.1)
Returns: bool True when bullish engulfing detected
EDGE CASES: Handles doji previous candle, zero range, tiny bodies
bearishEngulfing(minBodyRatio, minPrevBodyRatio)
Detects Bearish Engulfing pattern
Parameters:
minBodyRatio (float) : Minimum body size as ratio of total range (default 0.3)
minPrevBodyRatio (float) : Minimum previous candle body ratio to filter dojis (default 0.1)
Returns: bool True when bearish engulfing detected
EDGE CASES: Handles doji previous candle, zero range, tiny bodies
doji(maxBodyRatio, minRangeAtr)
Detects Doji candle (indecision)
Parameters:
maxBodyRatio (float) : Maximum body size as ratio of total range (default 0.1)
minRangeAtr (float) : Minimum range as multiple of ATR to filter flat candles (default 0.3)
Returns: bool True when doji detected
EDGE CASES: Filters out no-movement bars, handles zero range
shootingStar(wickMultiplier, maxLowerWickRatio, minBodyAtrRatio)
Detects Shooting Star (bearish reversal)
Parameters:
wickMultiplier (float) : Upper wick must be at least this times the body (default 2.0)
maxLowerWickRatio (float) : Lower wick max as ratio of body (default 0.5)
minBodyAtrRatio (float) : Minimum body size as ratio of ATR (default 0.1)
Returns: bool True when shooting star detected
EDGE CASES: Handles zero body (uses range-based check), tiny bodies
hammer(wickMultiplier, maxUpperWickRatio, minBodyAtrRatio)
Detects Hammer (bullish reversal)
Parameters:
wickMultiplier (float) : Lower wick must be at least this times the body (default 2.0)
maxUpperWickRatio (float) : Upper wick max as ratio of body (default 0.5)
minBodyAtrRatio (float) : Minimum body size as ratio of ATR (default 0.1)
Returns: bool True when hammer detected
EDGE CASES: Handles zero body (uses range-based check), tiny bodies
invertedHammer(wickMultiplier, maxLowerWickRatio)
Detects Inverted Hammer (bullish reversal after downtrend)
Parameters:
wickMultiplier (float) : Upper wick must be at least this times the body (default 2.0)
maxLowerWickRatio (float) : Lower wick max as ratio of body (default 0.5)
Returns: bool True when inverted hammer detected
EDGE CASES: Same as shootingStar but requires bullish close
hangingMan(wickMultiplier, maxUpperWickRatio)
Detects Hanging Man (bearish reversal after uptrend)
Parameters:
wickMultiplier (float) : Lower wick must be at least this times the body (default 2.0)
maxUpperWickRatio (float) : Upper wick max as ratio of body (default 0.5)
Returns: bool True when hanging man detected
NOTE: Identical to hammer - context (uptrend) determines meaning
morningStar(requireGap, minAvgBars)
Detects Morning Star (3-candle bullish reversal)
Parameters:
requireGap (bool) : Whether to require gap between candles (default false for crypto/forex)
minAvgBars (int) : Minimum bars for average body calculation (default 14)
Returns: bool True when morning star pattern detected
EDGE CASES: Gap is optional, handles low bar count, uses shifted average
eveningStar(requireGap, minAvgBars)
Detects Evening Star (3-candle bearish reversal)
Parameters:
requireGap (bool) : Whether to require gap between candles (default false for crypto/forex)
minAvgBars (int) : Minimum bars for average body calculation (default 14)
Returns: bool True when evening star pattern detected
EDGE CASES: Gap is optional, handles low bar count
gapUp()
Detects Gap Up
Returns: bool True when current bar opens above previous bar's high
gapDown()
Detects Gap Down
Returns: bool True when current bar opens below previous bar's low
gapSize()
Returns gap size in price
Returns: float Gap size (positive for gap up, negative for gap down, 0 for no gap)
gapPercent()
Returns gap size as percentage
Returns: float Gap size as percentage of previous close
gapType(volAvgLen, breakawayMinPct, highVolMult)
Classifies gap type based on volume
Parameters:
volAvgLen (int) : Length for volume average (default 20)
breakawayMinPct (float) : Minimum gap % for breakaway (default 1.0)
highVolMult (float) : Volume multiplier for high volume (default 1.5)
Returns: string Gap type: "Breakaway", "Common", "Continuation", or "None"
EDGE CASES: Handles missing volume data, low bar count
swingHigh(leftBars, rightBars)
Detects swing high using pivot
Parameters:
leftBars (int) : Bars to left for pivot (default 5)
rightBars (int) : Bars to right for pivot (default 5)
Returns: float Swing high price or na
swingLow(leftBars, rightBars)
Detects swing low using pivot
Parameters:
leftBars (int) : Bars to left for pivot (default 5)
rightBars (int) : Bars to right for pivot (default 5)
Returns: float Swing low price or na
higherHigh(leftBars, rightBars, lookback)
Checks if current swing high is higher than previous swing high
Parameters:
leftBars (int) : Bars to left for pivot (default 5)
rightBars (int) : Bars to right for pivot (default 5)
lookback (int) : How many bars back to search for previous pivot (default 50)
Returns: bool True when higher high pattern detected
EDGE CASES: Searches backwards for pivots instead of using var (library-safe)
higherLow(leftBars, rightBars, lookback)
Checks if current swing low is higher than previous swing low
Parameters:
leftBars (int) : Bars to left for pivot (default 5)
rightBars (int) : Bars to right for pivot (default 5)
lookback (int) : How many bars back to search for previous pivot (default 50)
Returns: bool True when higher low pattern detected
lowerHigh(leftBars, rightBars, lookback)
Checks if current swing high is lower than previous swing high
Parameters:
leftBars (int) : Bars to left for pivot (default 5)
rightBars (int) : Bars to right for pivot (default 5)
lookback (int) : How many bars back to search for previous pivot (default 50)
Returns: bool True when lower high pattern detected
lowerLow(leftBars, rightBars, lookback)
Checks if current swing low is lower than previous swing low
Parameters:
leftBars (int) : Bars to left for pivot (default 5)
rightBars (int) : Bars to right for pivot (default 5)
lookback (int) : How many bars back to search for previous pivot (default 50)
Returns: bool True when lower low pattern detected
bullishTrend(leftBars, rightBars, lookback)
Detects Bullish Trend (HH + HL within lookback)
Parameters:
leftBars (int) : Bars to left for pivot (default 5)
rightBars (int) : Bars to right for pivot (default 5)
lookback (int) : Lookback period (default 50)
Returns: bool True when making higher highs AND higher lows
bearishTrend(leftBars, rightBars, lookback)
Detects Bearish Trend (LH + LL within lookback)
Parameters:
leftBars (int) : Bars to left for pivot (default 5)
rightBars (int) : Bars to right for pivot (default 5)
lookback (int) : Lookback period (default 50)
Returns: bool True when making lower highs AND lower lows
nearestResistance(lookback, leftBars, rightBars)
Finds nearest resistance level above current price
Parameters:
lookback (int) : Number of bars to look back (default 50)
leftBars (int) : Pivot left bars (default 5)
rightBars (int) : Pivot right bars (default 5)
Returns: float Nearest resistance level or na
EDGE CASES: Pre-computes pivots, handles bounds properly
nearestSupport(lookback, leftBars, rightBars)
Finds nearest support level below current price
Parameters:
lookback (int) : Number of bars to look back (default 50)
leftBars (int) : Pivot left bars (default 5)
rightBars (int) : Pivot right bars (default 5)
Returns: float Nearest support level or na
resistanceBreakout(lookback, leftBars, rightBars)
Detects resistance breakout
Parameters:
lookback (int) : Number of bars to look back (default 50)
leftBars (int) : Pivot left bars (default 5)
rightBars (int) : Pivot right bars (default 5)
Returns: bool True when price breaks above resistance
EDGE CASES: Uses previous bar's resistance to avoid lookahead
supportBreakdown(lookback, leftBars, rightBars)
Detects support breakdown
Parameters:
lookback (int) : Number of bars to look back (default 50)
leftBars (int) : Pivot left bars (default 5)
rightBars (int) : Pivot right bars (default 5)
Returns: bool True when price breaks below support
bullishVolumeDivergence(leftBars, rightBars, lookback)
Detects Bullish Volume Divergence (price makes lower low, volume decreases)
Parameters:
leftBars (int) : Pivot left bars (default 5)
rightBars (int) : Pivot right bars (default 5)
lookback (int) : Bars to search for previous pivot (default 50)
Returns: bool True when bullish volume divergence detected
EDGE CASES: Library-safe (no var), searches for previous pivot
bearishVolumeDivergence(leftBars, rightBars, lookback)
Detects Bearish Volume Divergence (price makes higher high, volume decreases)
Parameters:
leftBars (int) : Pivot left bars (default 5)
rightBars (int) : Pivot right bars (default 5)
lookback (int) : Bars to search for previous pivot (default 50)
Returns: bool True when bearish volume divergence detected
rangeContracting(lookback)
Detects if price is in a contracting range (triangle formation)
Parameters:
lookback (int) : Bars to analyze (default 20)
Returns: bool True when range is contracting
EDGE CASES: Uses safe integer division, checks minimum lookback
ascendingTriangle(lookback, flatTolerance)
Detects Ascending Triangle (flat top, rising bottom)
Parameters:
lookback (int) : Bars to analyze (default 20)
flatTolerance (float) : Max normalized slope for "flat" line (default 0.002)
Returns: bool True when ascending triangle detected
EDGE CASES: Safe division, normalized slope, minimum lookback
descendingTriangle(lookback, flatTolerance)
Detects Descending Triangle (falling top, flat bottom)
Parameters:
lookback (int) : Bars to analyze (default 20)
flatTolerance (float) : Max normalized slope for "flat" line (default 0.002)
Returns: bool True when descending triangle detected
symmetricalTriangle(lookback, minSlope)
Detects Symmetrical Triangle (converging trend lines)
Parameters:
lookback (int) : Bars to analyze (default 20)
minSlope (float) : Minimum normalized slope magnitude (default 0.0005)
Returns: bool True when symmetrical triangle detected
doubleBottom(tolerance, minSpanBars, lookback)
Detects Double Bottom (W pattern) - OWN IMPLEMENTATION
Two swing lows at similar price levels with a swing high between them
Parameters:
tolerance (float) : Max price difference between lows as % (default 3)
minSpanBars (int) : Minimum bars between the two lows (default 5)
lookback (int) : Max bars to search for pattern (default 100)
Returns: bool True when double bottom detected
doubleTop(tolerance, minSpanBars, lookback)
Detects Double Top (M pattern) - OWN IMPLEMENTATION
Two swing highs at similar price levels with a swing low between them
Parameters:
tolerance (float) : Max price difference between highs as % (default 3)
minSpanBars (int) : Minimum bars between the two highs (default 5)
lookback (int) : Max bars to search for pattern (default 100)
Returns: bool True when double top detected
tripleBottom(tolerance, minSpanBars, lookback)
Detects Triple Bottom - OWN IMPLEMENTATION
Three swing lows at similar price levels
Parameters:
tolerance (float) : Max price difference between lows as % (default 3)
minSpanBars (int) : Minimum total bars for pattern (default 10)
lookback (int) : Max bars to search for pattern (default 150)
Returns: bool True when triple bottom detected
tripleTop(tolerance, minSpanBars, lookback)
Detects Triple Top - OWN IMPLEMENTATION
Three swing highs at similar price levels
Parameters:
tolerance (float) : Max price difference between highs as % (default 3)
minSpanBars (int) : Minimum total bars for pattern (default 10)
lookback (int) : Max bars to search for pattern (default 150)
Returns: bool True when triple top detected
bearHeadShoulders()
Detects Bearish Head and Shoulders (OWN IMPLEMENTATION)
Head is higher than both shoulders, shoulders roughly equal, with valid neckline
STRICT VERSION - requires proper structure, neckline, and minimum span
Returns: bool True when bearish H&S detected
bullHeadShoulders()
Detects Bullish (Inverse) Head and Shoulders (OWN IMPLEMENTATION)
Head is lower than both shoulders, shoulders roughly equal, with valid neckline
STRICT VERSION - requires proper structure, neckline, and minimum span
Returns: bool True when bullish H&S detected
bearAscHeadShoulders()
Detects Bearish Ascending Head and Shoulders (variant)
Returns: bool True when pattern detected
bullAscHeadShoulders()
Detects Bullish Ascending Head and Shoulders (variant)
Returns: bool True when pattern detected
bearDescHeadShoulders()
Detects Bearish Descending Head and Shoulders (variant)
Returns: bool True when pattern detected
bullDescHeadShoulders()
Detects Bullish Descending Head and Shoulders (variant)
Returns: bool True when pattern detected
isSwingLow()
Re-export: Detects swing low
Returns: bool True when swing low detected
isSwingHigh()
Re-export: Detects swing high
Returns: bool True when swing high detected
swingHighPrice(idx)
Re-export: Gets swing high price at index
Parameters:
idx (int) : Index (0 = most recent)
Returns: float Swing high price
swingLowPrice(idx)
Re-export: Gets swing low price at index
Parameters:
idx (int) : Index (0 = most recent)
Returns: float Swing low price
swingHighBarIndex(idx)
Re-export: Gets swing high bar index
Parameters:
idx (int) : Index (0 = most recent)
Returns: int Bar index of swing high
swingLowBarIndex(idx)
Re-export: Gets swing low bar index
Parameters:
idx (int) : Index (0 = most recent)
Returns: int Bar index of swing low
cupBottom(smoothLen, minDepthAtr, maxDepthAtr)
Detects Cup and Handle pattern formation
Uses price acceleration and depth analysis
Parameters:
smoothLen (int) : Smoothing length for price (default 10)
minDepthAtr (float) : Minimum cup depth as ATR multiple (default 1.0)
maxDepthAtr (float) : Maximum cup depth as ATR multiple (default 5.0)
Returns: bool True when potential cup bottom detected
EDGE CASES: Added depth filter, ATR validation
cupHandle(lookback, maxHandleRetraceRatio)
Detects potential handle formation after cup
Parameters:
lookback (int) : Bars to look back for cup (default 30)
maxHandleRetraceRatio (float) : Maximum handle retracement of cup depth (default 0.5)
Returns: bool True when handle pattern detected
bullishPatternCount()
Returns count of bullish patterns detected
Returns: int Number of bullish patterns currently active
bearishPatternCount()
Returns count of bearish patterns detected
Returns: int Number of bearish patterns currently active
detectedPatterns()
Returns string description of detected patterns
Returns: string Comma-separated list of detected patterns
OverfittingMetricsLibrary "OverfittingMetrics"
calculateMetrics(tradeResults, tradeTypes, minTrades, startCapital)
Parameters:
tradeResults (array)
tradeTypes (array)
minTrades (int)
startCapital (float)
randomizeParameter(baseValue, variationPercent, seed)
Parameters:
baseValue (float)
variationPercent (float)
seed (int)
classifyMarket(priceSeries, lookbackLength)
Parameters:
priceSeries (float)
lookbackLength (simple int)
checkOverfittingWarnings(winRate, profitFactor, totalTrades)
Parameters:
winRate (float)
profitFactor (float)
totalTrades (int)
calculateConsistency(tradeResults)
Parameters:
tradeResults (array)
isOverfitDetected(winRate, profitFactor, totalTrades, minTrades)
Parameters:
winRate (float)
profitFactor (float)
totalTrades (int)
minTrades (int)
getOverfitScore(winRate, profitFactor, totalTrades)
Parameters:
winRate (float)
profitFactor (float)
totalTrades (int)






















