PROTECTED SOURCE SCRIPT
ð§ Quantum Regime Shift Detector v3.0 â Institutional Edition

ð§ Quantum Regime Shift Detector v3.0 â Institutional Overview
ð What It Does
The Quantum Regime Shift Detector identifies when the market transitions between different volatility and behavioral states.
It classifies every moment as one of three regimes:
Regime Description Visual
Stable Low-volatility, predictable environment ideal for trend-following ðĒ Green
Transition High-volatility, chaotic regime shifts or market rotations ðī Red
Uncertain Mid-zone where signals conflict or structure is reforming ðĄ Yellow
âïļ How It Works
1ïļâĢ Five-Factor Market Feature Engine
Feature Description
Volatility Short-term standard deviation of price â captures movement intensity
Trend Strength Distance between fast and slow EMAs â shows directional persistence
Momentum Rate of price change â detects acceleration or exhaustion
Volume Change Relative volume spikes or droughts â measures participation shifts
Volatility Clustering ATR vs long-term ATR average â flags clustering of volatility bursts
2ïļâĢ Weighted AI-Style Shift Score
All five features are blended into a single smoothed composite using customizable weights
(default 30 % Volatility / 30 % Trend / 25 % Momentum / 15 % Volume / 20 % Clustering).
Think of it as a mini-neural-network attention layer that highlights whichever factor dominates.
3ïļâĢ Adaptive Percentile Thresholds
Analyzes the last 200 bars to build rolling percentiles:
ð Above 75th percentile â Transition
ð Below 25th percentile â Stable
âïļ Between â Uncertain
This self-adjusts to volatility shifts across any timeframe or asset.
4ïļâĢ Visual System
Element Meaning
Aqua Line Quantum Shift Score (main signal)
Red / Green Lines Dynamic thresholds
Blue Fill Uncertain zone
Purple Line Regime probability (0â1 scale)
Histogram Current regime (high/low bars)
Background Tint Directional bias â green for bullish, red for bearish
ðĻ Alerts & Integrations
Trigger Purpose
Bull Regime Shift Transition + bullish bias â âð Bullish regime expansion detected.â
Bear Regime Shift Transition + bearish bias â ââ ïļ Bearish volatility regime forming.â
Stable Zone Entry Calm phase â ââ Market entering stable phase.â
AI Bridge Hooks Webhook alerts â POST /regime?state=transition / stable for Python or Alice integration
ðĄ Practical Use Cases
Objective Application
Position Sizing Reduce exposure during red transition zones
Strategy Selection Trend-follow in green stable zones; mean-revert in red transitions
Risk Management Tighten stops or hedge when volatility expands
Entry Timing Prefer entries during stabilization after transitions
ð§Đ Key Strength
A multi-dimensional, self-learning market classifier that adapts across assets and timeframes, giving you a quantitative edge by revealing when to change your playbook â before the market does.
ð What It Does
The Quantum Regime Shift Detector identifies when the market transitions between different volatility and behavioral states.
It classifies every moment as one of three regimes:
Regime Description Visual
Stable Low-volatility, predictable environment ideal for trend-following ðĒ Green
Transition High-volatility, chaotic regime shifts or market rotations ðī Red
Uncertain Mid-zone where signals conflict or structure is reforming ðĄ Yellow
âïļ How It Works
1ïļâĢ Five-Factor Market Feature Engine
Feature Description
Volatility Short-term standard deviation of price â captures movement intensity
Trend Strength Distance between fast and slow EMAs â shows directional persistence
Momentum Rate of price change â detects acceleration or exhaustion
Volume Change Relative volume spikes or droughts â measures participation shifts
Volatility Clustering ATR vs long-term ATR average â flags clustering of volatility bursts
2ïļâĢ Weighted AI-Style Shift Score
All five features are blended into a single smoothed composite using customizable weights
(default 30 % Volatility / 30 % Trend / 25 % Momentum / 15 % Volume / 20 % Clustering).
Think of it as a mini-neural-network attention layer that highlights whichever factor dominates.
3ïļâĢ Adaptive Percentile Thresholds
Analyzes the last 200 bars to build rolling percentiles:
ð Above 75th percentile â Transition
ð Below 25th percentile â Stable
âïļ Between â Uncertain
This self-adjusts to volatility shifts across any timeframe or asset.
4ïļâĢ Visual System
Element Meaning
Aqua Line Quantum Shift Score (main signal)
Red / Green Lines Dynamic thresholds
Blue Fill Uncertain zone
Purple Line Regime probability (0â1 scale)
Histogram Current regime (high/low bars)
Background Tint Directional bias â green for bullish, red for bearish
ðĻ Alerts & Integrations
Trigger Purpose
Bull Regime Shift Transition + bullish bias â âð Bullish regime expansion detected.â
Bear Regime Shift Transition + bearish bias â ââ ïļ Bearish volatility regime forming.â
Stable Zone Entry Calm phase â ââ Market entering stable phase.â
AI Bridge Hooks Webhook alerts â POST /regime?state=transition / stable for Python or Alice integration
ðĄ Practical Use Cases
Objective Application
Position Sizing Reduce exposure during red transition zones
Strategy Selection Trend-follow in green stable zones; mean-revert in red transitions
Risk Management Tighten stops or hedge when volatility expands
Entry Timing Prefer entries during stabilization after transitions
ð§Đ Key Strength
A multi-dimensional, self-learning market classifier that adapts across assets and timeframes, giving you a quantitative edge by revealing when to change your playbook â before the market does.
āļŠāļāļĢāļīāļāļāđāļāļĩāđāđāļāđāļĢāļąāļāļāļēāļĢāļāđāļāļāļāļąāļ
āļŠāļāļĢāļīāļāļāđāļāļĩāđāļāļđāļāđāļāļĒāđāļāļĢāđāđāļāđāļāđāļāļ closed-source āļāļĒāđāļēāļāđāļĢāļāđāļāļēāļĄ āļāļļāļāļŠāļēāļĄāļēāļĢāļāđāļāđāđāļāđāļāļĒāđāļēāļāļāļīāļŠāļĢāļ°āđāļĨāļ°āđāļĄāđāļĄāļĩāļāđāļāļāļģāļāļąāļāđāļāđ â āđāļĢāļĩāļĒāļāļĢāļđāđāđāļāļīāđāļĄāđāļāļīāļĄāđāļāđāļāļĩāđāļāļĩāđ
āļāļģāļāļģāļāļąāļāļŠāļīāļāļāļīāđāļāļ§āļēāļĄāļĢāļąāļāļāļīāļāļāļāļ
āļāđāļāļĄāļđāļĨāđāļĨāļ°āļāļāļāļ§āļēāļĄāđāļĄāđāđāļāđāļĄāļĩāļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđāđāļāļ·āđāļāļāđāļāđāļŦāđāđāļāļīāļāļāļīāļāļāļĢāļĢāļĄāļāļēāļāļāļēāļĢāđāļāļīāļ, āļāļēāļĢāļĨāļāļāļļāļ, āļāļēāļĢāļāļ·āđāļāļāļēāļĒ, āļāđāļāđāļŠāļāļāđāļāļ° āļŦāļĢāļ·āļāļāļģāđāļāļ°āļāļģāļāļĢāļ°āđāļ āļāļāļ·āđāļ āđ āļāļĩāđāđāļŦāđāļŦāļĢāļ·āļāļĢāļąāļāļĢāļāļāđāļāļĒ TradingView āļāđāļēāļāđāļāļīāđāļĄāđāļāļīāļĄāđāļ āļāđāļāļāļģāļŦāļāļāļāļēāļĢāđāļāđāļāļēāļ
āļŠāļāļĢāļīāļāļāđāļāļĩāđāđāļāđāļĢāļąāļāļāļēāļĢāļāđāļāļāļāļąāļ
āļŠāļāļĢāļīāļāļāđāļāļĩāđāļāļđāļāđāļāļĒāđāļāļĢāđāđāļāđāļāđāļāļ closed-source āļāļĒāđāļēāļāđāļĢāļāđāļāļēāļĄ āļāļļāļāļŠāļēāļĄāļēāļĢāļāđāļāđāđāļāđāļāļĒāđāļēāļāļāļīāļŠāļĢāļ°āđāļĨāļ°āđāļĄāđāļĄāļĩāļāđāļāļāļģāļāļąāļāđāļāđ â āđāļĢāļĩāļĒāļāļĢāļđāđāđāļāļīāđāļĄāđāļāļīāļĄāđāļāđāļāļĩāđāļāļĩāđ
āļāļģāļāļģāļāļąāļāļŠāļīāļāļāļīāđāļāļ§āļēāļĄāļĢāļąāļāļāļīāļāļāļāļ
āļāđāļāļĄāļđāļĨāđāļĨāļ°āļāļāļāļ§āļēāļĄāđāļĄāđāđāļāđāļĄāļĩāļ§āļąāļāļāļļāļāļĢāļ°āļŠāļāļāđāđāļāļ·āđāļāļāđāļāđāļŦāđāđāļāļīāļāļāļīāļāļāļĢāļĢāļĄāļāļēāļāļāļēāļĢāđāļāļīāļ, āļāļēāļĢāļĨāļāļāļļāļ, āļāļēāļĢāļāļ·āđāļāļāļēāļĒ, āļāđāļāđāļŠāļāļāđāļāļ° āļŦāļĢāļ·āļāļāļģāđāļāļ°āļāļģāļāļĢāļ°āđāļ āļāļāļ·āđāļ āđ āļāļĩāđāđāļŦāđāļŦāļĢāļ·āļāļĢāļąāļāļĢāļāļāđāļāļĒ TradingView āļāđāļēāļāđāļāļīāđāļĄāđāļāļīāļĄāđāļ āļāđāļāļāļģāļŦāļāļāļāļēāļĢāđāļāđāļāļēāļ