OPEN-SOURCE SCRIPT
ที่อัปเดต:

Function - Kernel Density Estimation (KDE)

11 123
"In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function of a random variable."
from wikipedia.com

KDE function with optional kernel:
  • Uniform
  • Triangle
  • Epanechnikov
  • Quartic
  • Triweight
  • Gaussian
  • Cosinus


Republishing due to change of function.
deprecated script:
KDE-Gaussian
เอกสารเผยแพร่
added quartic and triweight kernels.
เอกสารเผยแพร่
  • added placeholder for kernels(logistic, sigmoid, silverman)
  • added kernel calculations for kernel(uniform, triangular, cosine)
เอกสารเผยแพร่
added calculations for kernels(logistic, sigmoid and silverman(Not working atm)
เอกสารเผยแพร่
removed silverman kernel, added highest value index line/label, nearest to 0 index as a dotted gray line.
เอกสารเผยแพร่
added extra stats/visuals to drawing function.

คำจำกัดสิทธิ์ความรับผิดชอบ

The information and publications are not meant to be, and do not constitute, financial, investment, trading, or other types of advice or recommendations supplied or endorsed by TradingView. Read more in the Terms of Use.