LazyBear

Ehlers Adaptive Cyber Cycle Indicator [LazyBear]

Another famous Ehlers indicator.

This is the adaptive version of Ehlers' Cyber Cycle ( CC ) (already published, check "More info" below). Idea behind making something "adaptive" is to calculate it using dynamic cycle period inputs instead of static setting. In adaptive cyber cycle, Ehlers uses the dominant cycle period as the length in computation of alpha.

According to Ehlers this should be more responsive than the non-adaptive version. Buy and sell signals should often occur one bar earlier than for the non-adaptive version.

I have the usual options in place. Check out plain CC for comparison.

More info:
- Cyber Cycle Indicator: - Cybernetic Analysis for Stocks and Futures ( Ehlers )

List of my public indicators: http://bit.ly/1LQaPK8
List of my app-store indicators: http://blog.tradingview.com/?p=970

List of my free indicators: http://bit.ly/1LQaPK8
List of my indicators at Appstore: http://blog.tradingview.com/?p=970
สคริปต์โอเพนซอร์ซ

ด้วยจิตวิญญาณของ TradingView อย่างแท้จริง ผู้เขียนสคริปต์นี้ได้เผยแพร่เป็นโอเพนซอร์ส เพื่อให้ผู้ค้าสามารถเข้าใจและตรวจสอบได้ ไชโยให้กับผู้เขียน! คุณสามารถใช้ได้ฟรี แต่การใช้รหัสนี้ซ้ำในสิ่งพิมพ์อยู่ภายใต้กฎของบ้าน คุณสามารถตั้งเป็นรายการโปรดเพื่อใช้บนชาร์ตได้

คำจำกัดสิทธิ์ความรับผิดชอบ

ข้อมูลและบทความไม่ได้มีวัตถุประสงค์เพื่อก่อให้เกิดกิจกรรมทางการเงิน, การลงทุน, การซื้อขาย, ข้อเสนอแนะ หรือคำแนะนำประเภทอื่น ๆ ที่ให้หรือรับรองโดย TradingView อ่านเพิ่มเติมที่ เงื่อนไขการใช้บริการ

ต้องการที่จะใช้สคริปต์นี้บนชาร์ตใช่ไหม?
//
// @author LazyBear 
// 
// List of my public indicators: http://bit.ly/1LQaPK8 
// List of my app-store indicators: http://blog.tradingview.com/?p=970 
//
study("Ehlers Adaptive Cyber Cycle Indicator [LazyBear]", shorttitle="EACCI_LB", overlay=false, precision=3)
src=input(hl2, title="Source") 
a=input(.07, title="Alpha")
s = (src + 2*src[1] + 2*src[2] + src[3])/6.0
c = n<7?(src - 2*src[1] + src[2])/4.0:((1 - 0.5*a)*(1 - 0.5*a)*(s - 2*s[1] + s[2]) + 2*(1-a)*c[1] - (1 - a)*(1-a)*c[2])
q1 = (.0962*c + 0.5769*c[2] - 0.5769*c[4] - .0962*c[6])*(0.5+.08*nz(ip[1]))
I1 = c[3]
dp_ = iff(q1 != 0 and q1[1] != 0, (I1/q1 - I1[1]/q1[1]) / (1 + I1*I1[1]/(q1*q1[1])),0)
dp = iff(dp_ < 0.1, 0.1, iff(dp_ > 1.1, 1.1, dp_))
med(x,y,z) => (x+y+z) - min(x,min(y,z)) - max(x,max(y,z))
md = med(dp,dp[1], med(dp[2], dp[3], dp[4]))
dc = iff(md == 0, 15, 6.28318 / md + 0.5)
ip = .33*dc + .67*nz(ip[1])
p = .15*ip + .85*nz(p[1])
a1 = 2.0/(p + 1)
ac=nz(((1-0.5*a1)*(1-0.5*a)*(s-2*s[1]+s[2])+2*(1-a1)*ac[1]-(1-a1)*(1-a1)*ac[2]), (src-2*src[1]+src[2])/4.0)
t=ac[1]
fr=input(true, title="Fill Osc/Trigger region")
plot(0, color=gray, title="ZeroLine")
duml=plot(fr?(ac>t?ac:t):na, style=circles, linewidth=0, color=gray, title="Dummy")
cmil=plot(ac, title="AdaptiveCyberCycle",color=blue)
tl=plot(t, title="Trigger",color=green)
fill(cmil, duml, color=red, transp=50, title="NegativeFill")
fill(tl, duml, color=lime, transp=50, title="PositiveFill")
ebc=input(false, title="Color bars?")
bc=ebc?(ac>0? (ac>t?lime:(ac==t?gray:green)): (ac<t?red:orange)):na
barcolor(bc)